

IBOC Occupied Bandwidth Case Study

David Maxson

NAB 2004

Topics

- Measuring Power of Digital Waveforms
- **◆IBOC RF Mask**
- Digital Intermodulation and Interference

First Thought

- IBOC is amazing
- Measurement issues will be addressed
- ◆ Interference issues are minor
 - No FCC standards yet
 - There is time to address
- Nothing in this talk is a deal breaker

Figure 1. iBiquity FM IBOC system signal spectral power density

- ◆IBOC Primary Main "subcarriers"
 - ■Total power 20 dB down (from FM analog)
 - ■Power in 1 kHz bandwidth 41 dB down

Figure 1. iBiquity FM IBOC system signal spectral power density

- ◆IBOC Primary Main "subcarriers"
 - ■Total power 20 dB down (from FM analog)
 - ■Power in 1 kHz bandwidth 41 dB down
 - System design specification
 - •Balances digital performance against interference to analog radios

- ◆IBOC Primary Main "subcarriers"
 - Linear amplification
 - ■Push transmitter to compression point for maximum efficiency
 - With compression comes intermodulation

Figure 1. iBiquity FM IBOC system signal spectral power density

Discussing Power

What
Should
this Ratio
Be?

iBiquity RF Mask

Frequency, F, Offset Relative to Carrier	Level, dB/kHz
200-215 kHz offset	[-61.4 - (frequency in kHz -200 kHz) · 0.867] dB
215-540 kHz offset	-74.4 dB
540-600 kHz offset	[-74.4 - (frequency in kHz -540 kHz) · 0.093] dB
>600 kHz offset	-80 dB

Table 3: iBiquity FM Hybrid Mode Noise and Spurious Emission Limits

iBiquity RF Mask

Frequency, F, Offset Relative to Carrier	Level, dB/kHz
200-215 kHz offset	[-61.4 - (frequency in kHz -200 kHz) · 0.867] dB
215-540 kHz offset	-74.4 dB
540-600 kHz offset	[-74.4 - (frequency in kHz -540 kHz) · 0.093] dB
>600 kHz offset	-80 dB

Table 3: iBiquity FM Hybrid Mode Noise and Spurious Emission Limits

iBiquity RF Mask

0 0 0 11111		
Frequency, F, Offset Relative to Carrier	Level, dB/kHz	
200-215 kHz offset	[-61.4 - (frequency in kHz -200 kHz) · 0.867] dB	
215-540 kHz offset	-74.4 dB	
540-600 kHz offset	[-74.4 - (frequency in kHz -540 kHz) · 0.093] dB	
>600 kHz offset	-80 dB	

Table 3: iBiquity FM Hybrid Mode Noise and Spurious Emission Limits

Discussing Power

What
Should
this Ratio
Be?

Answer:

At least 34.4 dB

Disclaimer: Early Production Model

Not at Latest Rev

("Your Mileage May Be Different")

Discussing Power

What
Should
this Ratio
Be?

Answer:

At least 40 dB

Consequences

Consequences

Should Be –80dBcfm in 1kHz

Consequences

More Like –60dBcfm in 100 kHz!

Consequences

Interference area- 4th adjacent

Assume –80 dBcfm spur @ 1kHz BW

Assume total power is -60

Consider 114 dBu contour of local analog

-60 dB is the 54 dBu of the spur

Assume 70 dBu contour of 4th adjacent

Interferer is only 16 dB below 4th adjacent signal-likely to cause interference

Consequences

Consequences

- Recommendation
 - Study this more
 - ■Evaluate *total power* of spur
 - Establish case-by-case rules

- Spectrum analyzers
 - Variations among detectors
 - Variations among detection modes
 - •True average of series of random samples
 - Average of Max and Min values in successive traces
 - Video filtering
 - Peak modes

Spectrum analyzers

Peak Hold

Peak Average

Max-Min Average

- •Where to sample?
 - Exciters quite clean
 - Peak to Average about 7 dB

- •Where to sample?
 - Power Amplifiers compress
 - Peak to average about 5 dB
 - •Roughly 2 dB compression
 - Measured with Agilent power meter

- •Where to sample?
 - Sample after PA to see actual spur levels
 - Compare to PM subcarrier levels
 - •Antenna bandwidth may reduce spurs somewhat
 - Measurements off air are naturally trickier

Remedies

- Run Class A with lots of headroom
- Filter
- Predistortion

Remedies

Filter

Remedies

Filter

Remedies

Filter

Remedies

Common amplification

Remedies

- Predistortion
 - Digital
 - Analog
- Manufacturers dealing with this in their designs

Remedies

Without Predistortion

Remedies

With Predistortion

Acknowledgements

John Kennedy, Entercom
Paul Shulins, Greater Media
Grady Moates, WUMB
Broadcast Electronics
Harris

Thank You

www.broadcastsignallab.com